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The soliton solutions of the form ~=A/cosh kx and 'Lit= B tanh kx of the 
nonlinear Schrfidinger equation have been considered with respect to many 
problems. In this paper, it is shown that the nonlinear Schr6dinger equation 
also possesses a solution manifold that generalizes the above soliton functions 
and provides a discrete spectrum of eigenfunctions and eigenvalues. With the 
help of a slight modification of these eigenfunctions, it is possible to extend 
them to the relativistic case, where they become solutions of a nonlinear Klein- 
Gordon equation associated with a discrete mass spectrum. 

1. INTRODUCTION 

The nonlinear Schr6dinger equation 
0 ~  ~2 

i f i - - +  A~ = A ]q']2~ (1) 
Ot 2 m  

has become of growing interest in many disciplines of modern physics [e.g., 
the theory of measuring processes and particle physics (Jackiw, 1977; 
Mielnik, 1974; Barut, 1977; Mielke, 1981), solid state and plasma physics 
(Kubo et al., 1976; Satsuma and Yajima, 1974; Zakharov and Shabat, 1973; 
Scott, 1973; Das and Sihi, 1979; Davey and Stewartson, 1974; Bertrand and 
Felix, 1976; Auer, 1979; Fogel et al., 1976; Flannery, 1982), and molecular 
and biophysics (Davydov, 1976, 1977, 1979; Ulmer and Hartmann, 1978; 
Ulmer, 1980, 1983; Gupta, 1979)] because this equation exhibits soliton 
solutions, which can readily be obtained via consideration of the stationary 
version of  equation (1) in one space coordinate: 

h 2 0 2 

E~ +Fro - -  '~ = X 1~12'~ (2) Ox 2 

tFB Radiologie, St. Marienkrankenhaus, Med. Physik und Biophysik, 5900 Siegen, West 
Germany. 

767 
0020-7748/88/0600-0767506.00/0 �9 1988 Plenum Publishing Corporation 



768 Ulmer 

Thus, the two solitary-wave solutions 

= A(cosh/cx) -1 

with 

and 

with 

E = - h 2 k 2 / 2 m ,  A 2 = - h 2 k 2 / m A  

(3) 

(3a) 

E = h2k2/m,  B 2= h2k2/mA (4a) 

have been carefully studied with respect to various problems in the cited 
references, but there are also solutions of equation (2) of  the form �9 = 
C(sinh kx) -1 and �9 = D(tanh kx) -1, exhibiting singularities at the origin 
x = 0. The solution (3) refers to a bound state for A < 0. If A > 0, then A 2 
in equation (3a) must be replaced by IAI 2. The solution (4) is related to a 
scatter state with E > 0. With respect to equations (1) and (2), it should be 
noted that if ~ F ( x ) e x p ( - i E t ) / h )  is a solution function, then for arbitrary 
velocity v the Galilei-transformed wave function is 

�9 '(x, t) = e x p [ i m v x / h  - i (E  + m v 2 / 2 ) t / h ]  ~r(x - vt) (5) 

obeying solely equation (1), and with reference to the solutions (3) and (4) 
the Galilei-transformed solutions can be associated with soliton signals 
propagating with the velocity v. In particular, the solution (3) is L2- 
integrable, whereas the solution (4) is not. However, if the additional 
assumption 11~'112 = a 2 S+-~ (cosh kx)  -2 dx = 1 is introduced, then the param- 
eter k can only assume the numerical value 

Ikl = mlXl /2h  2 (3b) 

If  k does not satisfy the relation (3b), the norm of the wave function (3) 
is completely undefined. 

It might seem surprising that equation (2) with regard to the relations 
(3), (3a), (3b), (4), (4a) has been applied to problems of  rather different 
fields, as already indicated. However, one reason is provided by relation 
(3b), exhibiting a proportionality between k and the coupling constant A, 
and therefore h determines whether k -1 is of the order 10-7-10 -5 cm 
(characteristic length in solid state and molecular physics) or k -~ ~ 10 -12 cm 
(plasma physics). 

In solid state physics, molecular physics, and biophysics, solitonlike 
signals are related to collective excitations (or quasiparticles) in sufficiently 
long (molecular) chains, and, according to Davydov (1977), excitons and 

= B tanh kx (4) 
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solitons may be produced via intramolecular electric dipole vibrations. Thus, 
excitons are collective excitations induced by light quanta and damped by 
emission of photons and phonons. Due to the Frank-Condon principle, 
the traveling of excitons along a chain is not related to lattice deformations, 
and their group velocity is greater than that of longitudinal sound. 

Solitons are similar quasiparticles, which may be induced by a local 
deformation at a specific molecule site via suitable interactions [e.g., 
chemical reactions, such as proton transfer or electron transfer in semicon- 
ductors (Petrov, 1979)], and the energy released by such interactions is 
stored in the chain in the form of solitons. The energy of solitons consists 
of the following three parts: 

1. Kinetic energy of the quasiparticle 
2. Elastic deformation of the chain 
3. Reorganization of the electric charge distribution, when the soliton 

travels along the chain (potential energy). 

The points 2 and 3 are responsible for the nonlinear term of equations (1) 
and (2), and the propagation velocity is less than that of sound. Thus, 
solitons can only be produced by external light, when, e.g., via singlet-triplet 
transitions the Frank-Condon principle is violated, and a change of electric 
charge distribution may be related to molecular deformations (change of 
conformation). 

A soliton excitation in biophysics has been studied by Davydov (1976, 
1979): Thus, by ATP hydrolysis the released energy is stored in a-helical 
proteins (ATP is covalently bound to these proteins), and Davydov used 
soliton excitation mechanism in biological problems, such as the contrac- 
tions of muscle fiber sarcomers (bundles of parallel-packed myofibrils 
containing protein filaments, ATP molecules, and Mg 2§ and Ca 2§ ions). 
This example belongs to the rather enormous class of molecular chains 
where soliton processes have become of increasing importance, among 
which we mention the so-called bond alternation defects (Walmsley and 
Pople, 1962) occurring in polyacetylene chains (CH)x, which Suet al. (1980) 
identified as soliton excitations (see also Figure 1). In addition, many soliton 
excitation processes have been considered in connection with molecular 
electronics and molecular biology (Carter 1981; Campbell and Peyrar, 1983; 

Fig. 1. Walmsley-Pople bond alternation defects in polythylene chains as an example of the 
excitation of solitons (+) and antisolitons ( - ) .  
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Suet  al., 1980; Beaconsfield and Balanovski, 1983, 1984), and it is mainly 
the stable form of solitons that may provide interesting concepts in these 
areas. Solitons appear to exhibit a great similarity to the Cooper pairs of 
superconductivity, and it is noteworthy that equation (2) is completely 
equivalent to the Ginzburg-Landau theory of phase transitions (e.g., super- 
conductivity): 

= I d, (6) 

refers to the free energy, and performing 3 ~  = 0 with respect to ~* yields 
equation (2) (a, fl, and T have to be chosen suitably). Although nonlinear 
Schr6dinger equations are, as already indicated, useful in many disciplines, 
every solution of equations (1) and (2) may be regarded in the light of 
equation (6) (Ulmer, 1980; Gupta, 1979; Landau and Ginzburg, 1950; 
Ginzburg, 1955; Feynman, 1976; Klose, 1965). The significantly wide range 
of possible applications of the nonlinear Schr6dinger equation (2) is a 
motivation to analyze the question of whether there are further solutions 
of (2) similar to the particular solution (3) which allow us to introduce the 
L2-norm [[xItll2 = 1. Although we are interested primarily in a knowledge of 
a solution spectrum of equation (2) with regard to problems of molecular 
biology, which will be discussed in a separate communication, the sub- 
sequent analysis may also be relevant to other disciplines where nonlinear 
problems are taken into consideration. 

2. A GENERALIZATION OF THE (cosh kx) -1 SOLUTION 

We shall verify that the ansatz 

= ~ Ak,(Cosh kx) -k' (7) 
k ' = l  

incorporates indeed the desired generalization of the solution (3) (L2- 
integrable wave function with E < 0). 

With the help of the expansion (7), equation (2) takes the form 
h2k 2 

E ~ Ak , (Coshkx ) - k '+  - ~ Ak, k ' 2 ( coshkx )  -k' 
k'=l 2m k'=l 

~2k2 
- - -  y~ Ak, k ' ( k ' + l ) ( c o s h k )  -k'-2 

2m k'=~ 
or 

= A Y. Apsdqs~r(cosh kx)-(P+q+r) (7a) 
p , q , r =  l 

Equation (7a) has to be satisfied for arbitrary values of the argument x, 
and because of the impossibility of representing a power (cosh kx) -k' by a 
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finite linear combination of  other polynomials ~t a~(cosh kx) -~ with I # k', 
all coefficients belonging to each power of  cosh kx in equation (7a) have 
to satisfy this equation; otherwise a polynomial  equation of infinite order 
and with arbitrary Ak, with respect to the argument x would have to be 
solved (similar conclusions hold in the case of  hypergeometric series). 
Therefore equation (7a) is considered by referring to each power of  
(cosh kx) -~ (/3 = 1, 2, 3, 4 , . . . ) :  

/3 = 1. This condition implies the relation 

(E + h2k2k'2/2m)Aa = 0 ( k ' =  1) (8) 

For A1 ~ 0 the energy E is equated to E = E1 = - h 2 k 2 / 2 m ,  and thus the 
energy agrees with that of  equation (3a). 

/3 = 2. For this case 

(E + 4h2k2/2m)A2 = 0 (8a) 

This equation yields a contradiction to equation (8), where we have already 
fixed the energy E, and therefore we have to put A2~ 0. However, a 
consideration of the cases/3 = 4, 6, 8 , . . . ,  shows that each An with even n 
has to vanish identically with reference to condition (8). 

/3 = 3. This case provides the determination of A3 as a function of AI: 

33 = 31 /4+ (mA/4h2k2)A~ (8b) 

and by considering the powers/3 = 5, 7, 9 , . . . ,  in equation (7a) the following 
coefficients are fixed recursively (see also Table I): m 1~ A3---~ A s ~  A7 ---> 
�9 �9 �9 A2,+~. The computat ion of the higher order contributions As, m7, . .  �9 
is a combinatorial  task; they are always defined in terms of A1 (see also 
Appendix A). However,  A1 is not determined by equation (7a), and only 
by the introduction of a norm can this amplitude be fixed�9 We assume that 

Table I�9 The A 1 Dependence of the Expansion Coefficients A2n+l (n = 0, 1 , . . . ,  6) a 

n a2n+l u~ u lA  3 u2a~ u3a 7 u4A 9 uSA~ 1 u6a~ 3 

0 A 1 1/40 0 0 0 0 0 0 
1 A 3 1/41 1/41 0 0 0 0 0 
2 A 5 2/42 3/42 1/42 0 0 0 0 
3 A 7 5/43 9/43 5/43 1/43 0 0 0 
4 A 9 14/44 28/44 20/44 7/44 1/44 0 0 
5 All 42/45 90/45 75/45 35/45 9/45 1/45 0 
6 A13 132/46 297/46 275/46 154/46 54/46 11/46 1/46 

au = mAh-2k -2. According to this table, Az3 is determined by A~3 = 
132Al/46+Z97ua~/46+275u2A~/46 + 154u3A7/46 + 54u4A9/46 + lluSA~/46 + u6Al~3/46. 
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the L2-norm is appropriate, because this norm usually provides the mathe- 
matical frame of (linear) quantum theory, implying the following 
expressions: 

I + ~ l ~ 1 2 d x = [ l ~ l [ 2 = l ~  ~ S2i+l,2j+lA2i+lA2j+l=l (9) 
- i , j = O  

where S o is given by 

f+oo 2P/~I-1 p--2m 
S o = _ (cosh kx) -(i+j) dx = ~  m=2 p - 2 m  + 1' p = i+ j  (9a) 

Using the A1 dependence of the coefficients Ak,(k'> 1) and with the help 
of the substitution u = A 2, one obtains from (9) a polynomial equation of 
infinite order: 

n a,u = 1 (9b) 
n = l  

and this equation would have to be solved to determine A~ = +~/-ff and the 
forthcoming coefficients. However, equation (9b) makes apparent an essen- 
tial problem. A very low-order (and probably rather insufficient) approxima- 
tion of �9 would be 

qt = Al(COS h kx) -l + A3(cos h kx) -3 (9c) 

implying a polynomial equation of degree 3 to be solved by the Cardan 
formula and yielding Al'2"3+=+(Ul,2,3)l/2 and All'2'3-=-(Ul,2,3) 1/2, but 
already by taking account of the term A5 the corresponding polynomial 
equation can only be solved by numerical methods. Therefore the conver- 
gence problems cannot be solved on the basis of equation (9b) and will 
have to be regarded separately in Section 4. Equation (9b) provides an 
infinite set of coefficients AM • A3 M*, �9 �9 �9 ,~2k'+~aM• (M = 1, 2, 3 .. .), and the 
first eigenfunction of (2) is given by 

~if lM~ ~ --I,M• L kx)-2k'+l = ~2k,+~cosn (M = 1, 2, 3 . . . )  (10) 
k ' ~ 0  

The energy eigenvalue is E1 = - h 2 k 2 / 2 m  and the degree of degeneracy is 
infinite ( ~ +  stands for soliton solution and ~ -  for antisoliton solution). 
Because we consider convergence problems in Appendix A, here we give 
a sketch of the results: 

The energy eigenvalue E1 is only defined in a particular valence band 
with the smallest and highest k values. 
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The subsequent eigenvatues and eigenfunctions are also related to 
specific valence bands. 

If these results are taken into consideration with regard to the Ginzburg- 
Landau theory of superconductivity [equation 6)], then it can be seen that 
equation (6) already describes the effect of energy lowering when a material 
becomes superconducting (energy gap). 

3. FURTHER SOLUTIONS OF EQUATION (2) 

The solution function (10) is not the only possible solution of equation 
(2) with respect to the expansion (7). By putting A1 -= 0, we obtain, according 
to equation (7a), 

(E2+4h2k2/2rn)A2 = O, E2 = -4h2k2 /2m (12) 

where A2 is a free parameter defined by the norm. Regarding equation (7a) 
with respect to the powers 13 = 3, 4, 5 , . . . ,  we find that now all coefficients 
of odd order A3,  A s ,  A 7 , . . .  have to vanish, and only the coefficients of 
even order are of relevance. The A2 dependence of A4 and A6 is given by 
(see also Table II) 

A4 = A2/2 
(12a) 

A 6 = 5A2/16+(mA/16h2k2)A 3 

The subsequent coefficients will be determined by considering the powers 
/3 = 8, 10, 12,. . .  With the help of the L2-norm and the substitution A~ = u, 
the polynomial equation (9b) furnishes Az~• = 1, 2, 3, 4 , . . . )  and hence 
A4 ~• A6~• : 1, 2, 3, 4 , . . . ) .  

Table II. The A 2 Dependence of the Expansion Coefficients A2n (n = 1, 2 , . . . ,  8) a 

n A2,, u~ u lA  3 u2A~ u3A 7 

1 A 2 1/4 o 0 0 0 
2 A 4 2/41 0 0 0 
3 A 6 5/42 1/42 0 0 
4 As 14/43 6/43 0 0 
5 Alo 42/44 27/44 1/44 0 
6 A12 132/45 110/45 10/45 0 
7 A14 429/46 429/46 65/46 1/4 6 
8 AI6 1430/47 1456/47 350/47 14/47 

aU = mAh-2k -2. Here At6 is determined by the expression Al6 = 1430A2/47+1456uA3/47 
+350u2AS2/47 + 14u3AT2/47. 
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The second eigenfunction of equation (2) is also of infinite degree of 
degeneracy and is given by 

�9 ~• = ~ AZ;ff• kx) -2" (12b) 
n = l  

where the corresponding eigenvalue is E2 =-4hZk2/2m. 
The same procedure can readily be performed for all eigenvalues Es, 

and according to equation (7a) we have to put Ak, =- 0 for all k' </3, whereas 
the subsequent coefficients Ate+2, As+4, As+6,... have to be determined by 
their A s dependence and A s is itself defined by the norm. We thus obtain 
an energy spectrum of equation (2): 

Et3=-/32h2/2m ( /3=1,2,3 . . . .  ) (13) 

and to each eigenvalue E~ an infinite set of degenerate eigenfunctions may 
be associated: 

al2"M __ ~ S M• kx)-2k'+~ - A2~,_s(cosh (13a) 
k'=/3 

The convergence problems of the expansion (13a) are completely identical 
to those of the eigenfunction ~ (see Appendix A). 

A general property of the eigenfunctions (13a) is that they are all 
symmetric. However, equation (2) may also be solved by an antisymmetric 
set of L2-integrable functions showing the general form 

xI~ = ~ Bk,(Cosh kx) -k' sinh kx (14) 
k'=2 

Higher order powers of sinh kx are not required, since the relation cosh 2 x - 
sinh 2 x = 1 can always be used to obtain the expansion (14), and with the 
help of this ansatz, equation (2) reads 

h2k  2 
Bk, k'(k'+ 1)(cosh kx) -k'-2 sinh kx 

2m k'=2 

= A ~ BS~ B& Bs~(cosh kx) -&-&-s~ sinh kx(cosh 2 k x -  1) (15) 
flb/32,S3=2 

This equation has to be treafed using the same principles discussed above. 
Thus, by considering/3 = 2, we obtain E = -h2k2/2m and the corresponding 
first eigenfunction 

~ : ~  = ~, B~,,~• kx) -2g' sinh kx (16) 
k '= l  
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and with respect to the determination of the coefficients B2, B4,. . .  the 
same remarks are valid as for the coefficients A 2 , A 4 , . . .  Thus, the B2 
dependence of B4 and B 6 is given by 

B4 = 0.75B2 + (;~m/4~2k2)B~ 
(17) 

B6 = -~ B4+ (Am/4hEkE)B~ B 4 -  (mA/12h2k2)B 3 

and the determination of B 2 via the L2-norm again involves the relations 
(9a), (9b) and the substitution u = B 2. The energy spectrum related to the 
ansatz (14) is 

E ~ _ l = - h 2 k 2 ( 1 - f l ) 2 / 2 m  (/3 = 2, 3, 4 , . . . )  (18) 

and the associated set of eigenfunctions (the degree of degeneracy is infinite) 
reads 

o c ~  

~ltM• _ 13-1 M• kx)-(2k'-~) B2k'-'~ (cosh ~ _ 1 -  ~ sinh kx 

k'=t~ (18a) 
(/3 = 2 , 3 , 4 , . . . ;  M =  1,2 ,3 ,4 , . . . )  

The special case/3 = 1 has been excluded in the expansion (18a) [or (14)] 
because Br~ 0 cannot be determined by the L2-norm. If the case B~ r 0 is 
taken into account, then B1 is not a free parameter defined by the norm, 
but is given by (15) providing E = h2k2/m and Bk,-=0(k'> 1). A similar 
situation occurs when, according to equation (6), we assume A1r 
Ak,~-0(k'> 1); then equation (7a) would provide E =-h2k2 /2rn  and A~ 
corresponding to equation (3a). 

4. AN EXTENSION TO THE RELATIVISTIC CASE 

The Lorentz-invariant analog to the nonlinear Schr~dinger equation 
(1) is a scalar nonlinear field equation of the type of a generalized Klein- 
Gordon equation 

m2c 2 
[ ] ,~- -  h2 ,~+al,i,12,i, (19) 

This equation has been taken as a starting point in nonlinear field theory 
(see, e.g., Jackiw, 1977; Mielnik, 1974; Mietke, 1981; and references cited 
therein) because the soliton functions of (19) have been related to problems 
of particle physics. These soliton functions are readily obtained via the 
solutions (3) and (4) of equation (2) because they have only to be slightly 
modified to yield 

= A cosh(kyx  + kyvt)  -1 (20) 
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where 

and 

where 

k 2 = m2c2/h2; A 2 = -2k2/A (20a) 

= B tanh(kyx - kyvt) (21) 

2 k 2 =  -m2c2/h 2, B 2 =  -2k2 /A  (21a) 

Y is given by 3, = 1 / (1 -v2 /c2 )  1/2. Thus, the solution (20) requires either 
A < 0  to yield k2>0  or A>0 ;  then A 2 has to be replaced by ]A] 2. The 
solution (21) is not convenient in the relativistic case, as can be verified 
from the relation (21a), because the condition m2> 0 must always hold. 
However, our main interest is a discussion of the symmetric solutions (7) 
and antisymmetric solutions (14) of equation (2) in the relativistic case (19). 
Thus, the relativistic analog of the solution manifold (13a) is 

CX3 

~.Tr M • , ~  = Y. A~2j,~[cosh(kyx" ko/vt)] "-2k'+~ (22) 
k'=/3 

(fl = 1 , 2 , 3 , . . . ;  M =  1,2,3) 

and of the solution manifold (18a) 

atr~_ a = M •  B2k,_, M~-  [cosh(kT x _ kT~t)]-2k'+~ 
k'=/3 

x s i n h ( k y x - k y v t )  ( / 3 = 2 , 3 , . . . ;  M =  1,2,3) (23) 

With respect to the procedure for determining the expansion coefficients 
A1, A2, A 3 , . . .  and B~, B2, B 3 , . . . ,  we  refer to the remarks of the preceding 
sections, and we note that even the numerical effort has not increased in 
the relativistic case (19). Since the expression m2cZ/R E plays the same role 
as the energy E in equation (2), the eigenvalue spectrum of equation (19) 
with respect to the solution manifold (22), (23) yields 

equation (22): m 2 = f12h2k2/c2, fl = 1, 2, 3 , . . .  (24) 

equation (23): m 2 = (1 -fl)Eh2k2/c2, fl = 2, 3, 4 , . . .  (25) 

We mention again that each eigenvalue of equations (24) and (25) is related 
to an infinite set of degenerate eigenfunctions characterized by the parameter 
M with M = 1, 2, 3 , . . . ,  and the only reason that we can consider in practical 
computations a finite subset is the polynomial equation (9b), which has to 
be solved numerically. 
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Because for each fl the allowed k values are only defined in the 
corresponding valence band (see Appendix A), equidistant levels of the 
mass spectrum according to equations (22) and (23) are not obtained. 

The eigenfunctions (22) and (23) may be considered as an indication 
that it is not satisfactory to treat nonlinear terms as perturbations of linear 
field equations, since these solutions do not exhibit convergence (and 
therefore they do not exist) in the case of the linear Klein-Gordon equation 
FlaY/d ' = ( m 2 c 2 / h 2 ) x I  1' because this transition (A ~ 0 )  may produce a singularity 
(see also Appendix A with respect to the behavior of the linear Schr6dinger 
equation). 

APPENDIX A. CONVERGENCE PROBLEMS AND SOME 
PHYSICAL CONSIDERATIONS 

In the preceding sections we assumed that the basis expansion (7) and 
its slight modification (14) represent convergent series providing the solution 
spectra of the nonlinear Schr6dinger (and, if appropriately modified, Klein- 
Gordon) equation. However, some essential properties referring to the 
convergence of the expansion (7) can be provided by applying (7) to the 
linear Schr6dinger equation of free particles (,~ -- 0): 

E ~  + ( h2 /2m)  O2~tt/OX 2 = 0 (A1) 

implying the relations 

h2k 2 
E k,=lE Ak,(Cosh kx) -k '+  2m kY~l,= Ak'k '2(c~ kx)-k' 

h2k a 
= - -  Y~ Ak, k ' ( k ' + l ) ( c o s h  kx) -k'-2 (Ala) 

2m k'=~ 

and 

E = - h 2 k 2 / 2 m  (k '= 1) 
(Alb) 

A k , ( k ' + l ) = A k , _ 2 ( k ' - 2 )  (k '= 3, 5 , . . . )  

Thus, in the linear case the recursive determination of the coefficients A2k,+l 
would be considerably simplified, but the expansion (7) does not converge 
with respect to (A1), and by putting e = 1/cosh kx, where e = 1 for x =0 
and e < 1 for Ikx] > 0, it is readily seen that it is the zero point (e = 1) that 
causes the principal difficulty: 

lim {ek'Ak,/Ak,_2 e k'-2 = [(k'+ 1 ) / (k ' -  1)]e 2} (Alc) 
k'~oc~ 

Thus, a necessary and sufficient criterion of absolutely convergent series is 
that (besides lima,,~ Ak ,~  0) the limit of the ratio (Alc) is always <1, but 
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this condition is readily satisfied for e < 1 (outside the zero point), whereas 
for e = 1 (x = 0) the relation (Alc) provides 1, and therefore the zero point 
of the (free) particle causes the divergent behavior. The result (Alb) is 
related to a serious contradiction: If the expansion (7) is L2-integrable with 
respect to (A1) and (Ala),  then for a free particle the total energy ( = kinetic 
energy) has to be >0,  and because of the relation (Alb) and the singularity 
at the zero point, equation (Ala) does not provide L2-integrable wave 
functions. Therefore, the case h - - 0  yielding (A1) has to be excluded, as 
this case leads to a singularity at the zero point with respect to the expansion 
(7). One might be surprised by this condition, but it should be noted that 
there are similar situations in other problems. The harmonic oscillator 
eigenfunctions ~ ,  = Hn(ax)  exp(-o~Zx 2) with a 2 = mZw~/2h 2 become sin- 
gular and non-L2-integrable by taking w0-  0. So the wave function of free 
particles is not obtained by this limit. 

It might appear that the singularity problem at the zero point (x = 0) 
does not exist when the antisymmetric expansion (14) is applied to the 
linear Schr6dinger equation (A1), because the functions 

fo = (sinh kx)(cosh kx) -~ (A2) 

vanish at X = 0 and exhibit a maximum for 

x = k -1 arcosh + [(1 - 1/fl )--111/2} 
and a minimum for 

x = k -1 arcosh{-[(1 - 1//3)-1] 1/2} 

However, by taking lim fl ~ ~ the maximum and minimum of (A2) are both 
at the zero point, and therefore the same singularity is produced by the 
expansion (14) with respect to (A1). 

By a suitable modification of the expansions (7) and (14) it is possible 
to pass continuously to the linear limit (h =0)  without producing any 
singularity, but this case will have to be discussed after the present analysis 
of convergence properties. 

The negative-energy eigenvalues referring to bound states are only 
consistent with an additional attractive potential, and it has been noted 
(Barut, 1977) that equation (2) may be regarded as a usual Schr6dinger 
equation with a potential proportional to the density of solutions q ~  = 
3.1@12q ~. Because 1@12 has to remain always _>0(-c~_< x -  + ~ ) ,  an attractive 
potential or negative-energy eigenvalues must be connected tO the condition 
)t < 0, and, indeed, we shall verify that convergence of the expansion (7) 
or (14) is closely related to the condition A <0.  

The first problem of convergence of the expansion (7) with respect to 
equation (2) is the proof  of a pointwise convergence; after that, the norm 
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convergence shall be discussed. Even in the nonlinear case [equation (7a)] 
the pointwise convergence has to be regarded in the zero point (e = 1, x = 0), 
since it follows that the expansion 

= ~ Ak, e k' (e = 1/cosh kx) (A3) 
k'  

is convergent for 0 -  e < 1 (x arbitrary, but nonzero) if it is convergent for 
e = 1 (zero point, and therefore the pointwise convergence is established at 
every arbitrary x ~ 0 when the expansion (7) exists at the zero point. We 
should also point out that our main interest lies in the first eigenfunction 
q ~ ,  representing an infinite set of eigenfunctions related to one energy 
eigenvalue (E =-hZk2/2m) .  The reasons are: 

1. The convergence properties of the other eigenfunctions can be 
reduced to the standard case to be considered. 

2. The eigenfunction ~M, stands in close relationship to the soliton 
solution (3). 

3. Some physical aspects of the eigenfunctions ~ and eigenvalues 
E0 (fl > 1) appear to be somewhat unclear, since the energy Eo 
becomes lower and lower when fl increases (see also the remarks 
at the end of this Appendix). 

Table I shows the dependence of the coefficients A2n+l in terms of the 
parameters A1 and the coupling constant h (from A1 to A13 ). Thus, for a 
bound state (h < 0  and being compatible with E < 0 )  the coefficients 
A3, As,. . .  and higher order are corrected such that a conditionally conver- 
gent series can be constructed, whereas for h > 0 the expansion (7) with 
respect to equations (2) and (7a) does not exist. These coefficients exhibit 
the same linear contributions, being proportional to A~, as the linear 
Schr6dinger equation, whereas the nonlinearity yields power corrections in 
terms of h. For example, the expansion coefficient of A~ is 1, whereas 
appropriate conditions lead to A3 < 0, A5 > 0, etc., and therefore the Leibniz 
criterion for series that do not absolutely converge has to be applied: 

Y. lAk,l(--1)k'< oo, [Al l>A31>'"  ">lak,[, lim [ak,l~O (A4) 
k'  k ' ~  cx3 

This is a sufficient (but not necessary) condition for convergence, and, 
according to a theorem of Riemann, a rearrangement of an infinite partial 
set is not commutative. In other words, it is impossible first to take the sum 
of all linear terms (referring to A1) and thereafter the sum of all contributions 
--h, ~ h  2, --h 3, etc., separately. The conditions (A4) can be analyzed by the 
formation law of A2n+~: 

n 

A~o+I=A, jYoRJn= , 4O(k2h~)._ j(mA)~-~ A~ ~-~j (AS) 
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For even j (0, 2, 4 , . . . ) ,  Rj,, is given by 

Rj,,, = ( U / 2 / j ! ) n ( n  - 1 ) . . .  (n + 1 - j / 2 ) ( 2 n  + 1 - 2 j ) ( 2 n  - 1) 

•  ( 2 n + 3 - j )  (A6) 

and for odd j (1, 3, 5 , . . . ) ,  Rj,, is given by 

Rj, ,  = ( 2 ( J - 1 ) / z / j ! ) n ( n  - 1)(n - 2 )  �9 �9 �9 In - ( j - 3 ) / 2 ]  

•  ( 2 n - j + 2 )  (A6a) 

The recurrence formulas (A6), (A6a) can be constructed by an evaluation 
of equation (7a), where A2,+1 appearing only in the linear part of (2) is 
determined by the cubic term and therefore the powers of (cosh kx) -~ have 
to be mutually compared with respect to the coefficients: 

h ~ • Y, A p A q a r ( c o s h  kx) -(p+q+r) 
p q r 

= linear contributions �9 (cosh kx)-(2"+l) (p + q + r = 2n + 1) 

There is one combination with p = q = r = p, whereas there are three combi- 
nations with p = q # r (cyclic) and six combinations with p ~ q ~ r ~ p 
(cyclic). The above recurrence formulas are readily tested by complete 
induction, and from (A5), (A6), and (A6a) we get the following results: 

Result 1: 

lim A2n+l ~ 0 (A7) 
n - ~ x 3  

A more sophisticated problem is the satisfaction of the remaining conditions 
sufficient for convergence. Thus, by taking k = co (E~ ~ - o e ) ,  all contribu- 
tions of the powers of Am would vanish, whereas the case k ~ 0  would yield 
infinities. Therefore, there are threshold values for k: (and for the energy) 
to satisfy the remaining conditions of (A4): 

Result 2: 

mlhlA~/5h 2 < k 2 < m[hla~/2h 2 (A8) 

Thus, k 2 has to be assumed within these boundaries, but A~ is still completely 
undefined, and therefore we have to proceed in the following way: 

I. A~ is determined by the norm. 
2. After fixation of  the k dependence of A~ the allowed values of k 

can be fixed according to the inequality (A8). 

Inequality (A8) states that there is only convergence according to the 
criterion (A4) when the energy E1 = - h 2 k 2 / 2 m  is restricted to an energy 
band. It is possible that the modification 

m l X l a ]  < k 2 <_ mlhla  ] (m8a) 
5h2 - 2h2 
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also yields convergence, since (A4) is a sufficient condition, but this cannot 
be proved without explicit calculations. 

Assumptions 1 and 2 are plausible, as can be concluded from a com- 
parison with the linear case, where the divergent behavior at the zero point 
(e = 1) requires the assumption that A1 - 0 and that A~ should be >0  but 
finite due to the norm (e.g., <1), and yet the inequality (A8) incorporates 
a more general validity than the simplification A~ < 1. 

A further consideration is the proof  of the existence of a norm of the 
wave function. However, this cannot be achieved by the L2-norm yielding 
equation (9b). The proof  of the existence of  the L2-norm can be given by 
a stronger condition, namely the existence of a maximum norm M, and of 
the Ll-norm (S_~ [~[ dx < oo), whereby the existence of the maximum norm 
M. and of the Ll-norm is shown in Appendix B. Let ~ =  

o o  

~r At~[cosh kx] -~ be uniformly convergent on R; then it follows that 
�9 (x) is continuous on R, because the following conditions hold: 

lira ~F(x) = 0 
Ixl-~oo 

(A9) 
limA~ =0  (/3 ~ oo) 

Therefore ~ ( x )  is also bounded on ~. If M, = maxlq~(x)l , then the following 
inequality holds (for all x 6 R): 

[l~(  x )l/ M.]  2 <-I ' t ' (x)l /M. (A10) 
From this inequality it follows that 

 I_7 ;7 1~12dx=M. j*/M.12dx<<-M2._ I* /M.Jdx  (Al l )  

and therefore we obtain the desired result 

f_7 I_7 f_+2 I,~1 = dx <- M .  I'~1 dx - I.I 2 dx < oo (A12) 

In practical problems we can work as follows: A1 is determined by equation 
(9b), being related to the L2-norm with respect to higher order approxima- 
tions (e.g., M>>20); then the band of the permitted k values is fixed 
according to the inequality (A8). In this way a finite approximation of qs~ 
with M degenerate functions is obtained. 

The same considerations as applied to qq can also be taken with regard 
to the eigenfunctions ~ t  (where/3 > 1 and Er = -h2k2/32/2m) and to the 
antisymmetric eigenfunctions according to the expansion (14). Thus, in the 
case of qt2~ the inequality (A8) has to be replaced by 

mlxla~ _~ 
-13  < hZk2 < (A13) 
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and we note that for each energy eigenvalue Er ( 13 --- 1) an inequality of  this 
kind must be valid in order for the conditions (A4) to be satisfied. We 
briefly state the consequence: For each negative energy (E~ < 0) there exists 
a band of permitted k values with upper  and lower limits analogous to the 
inequality (A4). Since k2--[h[, the bandwidth depends on the coupling 
constant h. In analogy to the hole theory, one would assume that all ~ 
states with/3 > 1 should be occupied, but this consideration is only consistent 
with the exclusion principle, and therefore further physical considerations 
would have to be introduced. However, the solution ~1 ~ may also be referred 
to the Ginzburg-Landau theory of superconductivity, and thus we can verify 
the energy gap of a superconducting state. 

We also note that by the modification 

k'=/3 

where 

(A,, cosh kx -k '+  Bk, cosh kx -k'-I sinh kx) exp(ipx)  (A14) 

B~ =•  
(A15) 

Er = h 2 p2 /2m - h 2k2/32/2rn 

Equation (2) can also be solved, and, by taking A = 0, a singularity at the 
origin x = 0 does not occur, but this ansatz has the disadvantage that one 
cannot obtain real wave functions and there is no possibility to distinguish 
between symmetric functions (7) and antisymmetric functions (14). 

It should further be mentioned that with the help of  the ansatz (A15) 
nonlinear spinor equations can be solved exactly, whereas restrictions to 
the expansions (7) and (14) are not possible, in contrast to the nonlinear 
Kle in-Gordon equation. However, due to the spin-spin coupling there 
arises a more difficult multiplet structure, and the evaluation of the nonlinear 
terms according to the expansion (A15) requires more effort than for scalar 
fields. 

Many types of  nonlinear field equations have been proposed (Ivanenko, 
1979; Heisenberg, 1966), 2 but for brevity we consider a simplified version: 

O~ mc 
y 7 = - -  W+ A ~ ( ~ y s * )  (A16) 

Ox ~ h 

2The nonlinear spinor equation proposed by Ivanenko (1979) is based on classical field theory 
(the torsion of U4-space is the cause of the nonlinearity), whereas the nonlinear theory 
according to Heisenberg (1966) is based on quantum field theory with indefinite metric. The 
group-theoretic assumptions (spinxisospin) are also rather different from the Ivanenko 
equation, but Heisenberg [see further references in Heisenberg (1966)] has also performed 
perturbation calculations of the classical version. Therefore the computation method presented 
here might be interesting for both cases. 
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A special case is a restriction of the four-component Dirac spinor �9 to 
(qx~, 0, 0, 0) and to the two coordinates z, t: 

h 0q~l+h 0q~1 -Yz - -  - r ,  - = m c v a + A h ~ ]  (A17) 
Oz c at 

Then, by the expansion 

�9 ~ = ~ [Ak, cosh(kyz-  kyvt) -k" 
k'=S 

+ Bk" sinh0c'),z - kyvt) cosh(kyz - kyvt)-k'-') (A18) 

one can solve (A17) using the same principles as above, yielding 

A s = B s (for all/3 = 1, 2 , . . . )  
(A19) 

k = mc/h/3 

With respect to k, note that band structure properties also hold, as obtained 
in the case of the nonlinear Schr6dinger (and Klein-Gordon) equation. 

APPENDIX B. EXISTENCE OF THE L2-NORM 

The existence of  the LE-norm of the expansion (7) with respect to 
equation (2) (and also to the nonlinear Kle in-Gordon equation) can be 
reduced to the existence of a maximum norm and an Ll-norm [see, e.g., 
relations (Al l ) ,  (A12)]. 

Maximum norm (M,). Let M, = maxl~]; then for all expansions con- 
structed on the basis of equation (7) we have Mn = maxlq'] = ]Y~s As [, because 
the set of  functions {(cosh kx) -s} always exhibits a maximum at the zero 
point x = 0 (for each/3 >_ 1). In the nonlinear case, the summation Y43 As < co 
holds, and therefore [~s As[ <oo is also true, but ~s  IAsl does not exist. 

Ll-norm(S+~ ]~] dx < co). For convenience, we regard the standard case 
(the same is true for the other cases): 

I +~lqrldx=alsl-I-a3S3+'''+- k'=3 ~ a2k'+lS2k'+l 

where S~k,+~ is given by 

S2k'§ (coshkx) -(2k'§ dx 

The latter integral is readily evaluated to yield 

~[1 .3 .5 . . . (n-2) ]  
$1=~, S ~ - k [ 2 . 4 . 6 . . . ( n _ l ) ]  , n > l  
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Defining S. = $1 �9 S" (S" < 1 for n > 1 and S'~ = 1 for n = 1), we obtain 

f +f [xtrl Al+A3S~3+" "+ k ' = 3  ~ S'2k'+lA:k'+l l 
Because S'2<S" 1 (if n2> nl) and S ' ~ 0  (if n ~ o e ) ,  we obtain 

f+~ dx<<-S,~ 
With the help of the relations (A9)-(A12) we have shown that the wave 
functions are L2-integrable in the nonlinear case if the maximum norm and 
Ll-norm exist. With respect to the modified expansion (14), we note that 
the maximum of these functions (sinh kx) (cosh kx)-~ (fl - 2 ) i s  usually not 
at the zero point, but at xm = k -1 arcosh[ (1 -1 / f l ) -~ ]  1/2. The existence of 
the maximum norm then requires that the sum 

Mn = m a x l ~ , =  I ~ B~(1-1/fl)~/2[(1-1/fl)-1-111/2 I 
~=2 

remains finite. 
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